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ABSTRACT: Eflicient prediction of the air quality response to
emission changes is a prerequisite for an integrated assessment
system in developing effective control policies. Yet, representing the

nonlinear response of air quality to emission controls with accuracy

remains a major barrier in air quality-related decision making. Here,
we demonstrate a novel method that combines deep learning
approaches with chemical indicators of pollutant formation to
quickly estimate the coefficients of air quality response functions
using ambient concentrations of 18 chemical indicators simulated
with a comprehensive atmospheric chemical transport model
(CTM). By requiring only two CTM simulations for model
application, the new method significantly enhances the computa-
tional efficiency compared to existing methods that achieve lower accuracy despite requiring 20+ CTM simulations (the benchmark
statistical model). Our results demonstrate the utility of deep learning approaches for capturing the nonlinearity of atmospheric
chemistry and physics and the prospects of the new method to support effective policymaking in other environment systems.

Air pollution is a global concern due to its harmful effects
on human health," climate,” agriculture and ecosystem
health,’ and visibility.* Ambient PM, 5 (particulate matter with
an aerodynamic diameter less than 2.5 ym) and ozone (O;)
are among the highest risk factors for global premature
mortality,"” with PM,; pollution estimated to have con-
tributed to 2.9 million deaths globally in 2017 and Oj; pollution
to nearly half a million deaths.” A central challenge in
effectively controlling the sources of ambient PM, 5 and O; is
that the dominant contributors to these pollutants are emitted
precursors such as sulfur dioxide (SO,), nitrogen oxides
(NO,), ammonia (NHj;), and volatile organic compounds
(VOCs)” that undergo chemical transformations in the
atmosphere. The chemical reactions that lead to O; and
PM, formation involve highly nonlinear processes across
multiple phases that vary significantly with meteorological
conditions and precursor levels. Despite their complexity, these
chemical pathways ultimately dictate the strong nonlinear
responses of PM, s and Oj to precursor emission changes®™"
and must be accurately modeled.

Comprehensive chemical transport models (CTMs) im-
plemented with the most recent knowledge of atmospheric
science are the preferred tools for simulating the chemical and
physical processes occurring in the atmosphere.> Numerical
experiments such as simulating air quality under conditions of
reduced precursor emission levels relative to a baseline case
(i.e, “brute-force” method) can be conducted to investigate
the response of air quality to emission changes.'* The
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sensitivity of air pollutant concentrations to emission sources
can also be explored with advanced techniques such as the
decoupled direct method (DDM),"* higher-order DDM,'® and
adjoint sensitivity analysis.'” Contributions of emissions to
ambient concentrations can be estimated using ozone source
apportionment technology,'® particulate matter source appor-
tioning technology,'” integrated source apportionment meth-
ods,””*! and source-oriented models.”> These methods are
practical for quantifying the relative contributions of emission
sources to air pollution and the sensitivity of air pollution to
limited changes in emissions;”> however, they are computa-
tionally expensive and do not address prediction of air quality
responses to emission changes for the wide range of possible
scenarios of interest to policymakers.

Efficient and accurate prediction of air pollutant responses to
emission changes is a key component of the integrated
assessment systems commonly used by policymakers to quickly
achieve multiple objectives. Integrated assessment models for
air pollution control quantify the influence of future policies on
air pollution levels using process parameterizations and are
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used to analyze the benefits and costs of emission controls in
designing efficient strategies to attain air quality goals.”*~**
The Air Benefit and Cost and Attainment Assessment System
(ABaCAS) is an integrated assessment system that connects air
pollution emission control with health benefits and cost
estimation.”” In ABaCAS, the response of pollutant concen-
trations to emission changes is predicted in real time with a
response surface model (RSM) developed from many CTM
simulations using advanced statistical interpolation techni-
ques.””*" Recently, a series of innovations have improved the
representation of nonlinear interactions among precursors
from sources in multiple regions in extended versions of the
original RSM (i.e., E-RSMs).>*~>* To ensure model accuracy,
the development of RSM and E-RSM requires many control
scenarios to be simulated with a CTM, with a heavy
computational burden that limits the adaptability and broad
application of RSMs. To partially address this issue, an RSM
based on polynomial functions (pf-RSM) was recently
developed using prior knowledge from earlier RSM studies
to reduce the number of CTM simulations required for RSM
development by 60%.”> However, implementation of the pf-
RSM still requires at least 20 CTM simulations, and such
computational cost remains a significant barrier to the broad
adoption of RSM technology.

In the pf-RSM, polynomial functions were fitted individually
for each spatial grid cell and therefore did not consider the
moderate degree of spatial correlation that is common among
air pollutants. Also, the functions were fitted solely based on
simulated O; and PM, 5 concentrations without considering
the concentrations of related chemical species. Many species
are influenced by common atmospheric processes and
reactions and are highly correlated in the atmosphere.
Moreover, concentrations of secondary pollutants, such as O,
and PM, 5, may largely be determined by the ambient levels of
their precursors. Previous studies suggest that certain
combinations of related chemical species can be used as
indicators for O and PM, 5 chemistry.***” Studies have also
shown that the response of O; and PM,; to changes in
precursor levels can be identified from changes in the
concentrations of related species,*?’8 as illustrated by the
empirical kinetic modeling approach (EKMA) diagrams of
the response in O; and PM, 5 concentrations to changes in
NO, and VOC concentrations.””*" Such relationships imply
that nonlinearity in the O; and PM, response to precursor
emission changes can be quantified using combinations of
ambient concentrations of certain species (hereafter indica-
tors) and that the indicator—pollutant relationships are
independent of location or time.

Despite the potential predictive value of the chemical
indicators, previous RSMs have been directly fit to O; and
PM, s concentrations because collinearity associated with the
moderately correlated indicators cannot be resolved with
statistical regression models. In contrast, neural network
algorithms are well suited to address collinearity issues and
have been used in recent air quality prediction studies.”"**
Moreover, convolutional neural networks (CNNs) can
potentially enhance predictive capability by preserving
important spatial features of pollutants through the network.
Although previous studies have used neural networks to
forecast air quality under varying meteorological conditions
and develop concentration fields for retrospective periods,
deep learning methods have not been applied to compre-
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hensively address air quality prediction under varying emission
levels, which is of central importance to policymakers.

In this study, we present a novel method called the deep-
learning-based response surface model (DeepRSM) to
characterize the response of O3 and PM, s concentrations to
the full range of emission changes using a deep CNN with a
carefully designed architecture and training method. The
training and test data for the DeepRSM model are based on
brute-force simulations with the Community Multiscale Air
Quality (CMAQ) CTM (Table S1) on domains that cover
China (noted as CN27) and three polluted regions within
China (i.e., Northern China Plain, NCP; Fen-Wei Plain, FWP;
and Chuan-Yu region, CYR) (Figure S1). The DeepRSM
based on the trained CNN can reliably estimate the
responsiveness of O3 and PM, s concentrations to emission
changes for any domain and time period in real time using only
ambient concentrations of related chemical species from two
simulations (i.e, baseline and fully controlled emission
scenarios). To demonstrate the performance of DeepRSM,
we evaluated DeepRSM predictions against CTM results in a
series of experiments with different types and numbers of
training data sets, as summarized in Table S2. DeepRSM
predictions are also compared with those of the existing RSM
method, which serves as the benchmark case in this study.

B METHODS

CTM Configuration. The pf-RSM and DeepRSM were
developed using CTM simulations with the CMAQ_model
(version 5.2; www.epa.gov/cmaq). Baseline concentrations and
the responses of PM, and O; to emission controls were
simulated for a matrix of 40 emission control scenarios (Table
S1) as part of our previous pf-RSM development.’ The four
modeling domains are shown in Figure S1. Simulations for the
CN27 domain used 27 km by 27 km horizontal resolution, and
simulations for the three nested domains (i.e., NCP, FWP, and
CYR) used a finer resolution of 9 km by 9 km. Modeling was
performed for January, April, July, and October in 2017 to
represent winter, spring, summer, and fall, respectively. O,
concentrations were analyzed based on afternoon averages
(12:00—6:00 pm local time), and PM, s concentrations were
based on daily or monthly averages.

The emission data were developed by Tsinghua University
based on a bottom-up method with high spatial and temporal
resolution. Meteorological fields were based on simulations
with the Weather Research and Forecasting (WRF, version
3.7) model. The configurations of the WRF and CMAQ
models matched those of our previous study.””** The
performance of the CMAQ model for predicting O; and
PM, 5 concentrations was thoroughly evaluated using ambient
measurements” " and shown to be acceptable based on
recommended benchmarks for comparisons with ground-based
observations.

pf-RSM Configuration. Our previous study suggested that
the nonlinear response of O; and PM, concentrations to
precursor emission controls can be represented by a set of
polynomial functions (i.e, pf-RSM).”> The structure of the
polynomial function is expressed as follows

n
Aconc = ) X; X (Exoy)™ X (Esop)" X (Exy)"
i=1

X (Evocs)di (E1)
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Figure 1. Correlation among the 14 coefficients (row) of terms in the response functions for O; (a) and PM, 5 (b) and the incremental change in
concentrations of the indicators (column) between the baseline and clean condition simulations for the CN27 domain.

where Aconc is the response of the O; and PM,
concentrations (i.e, change relative to the baseline concen-
tration) calculated from a polynomial function of four variables
(Exoy Esoy Exny Evocs); Enoy Eso, Enmy and Eyog, are the
ratios of emission changes relative to baseline emissions for
NO,, SO,, NH;, and VOC, respectively; and a;, b, ¢, and d;
represent the nonnegative integer powers of Exo, Eso, Exm,

and Eypcy respectively. X; (the coefficient of term i) is
determined by fitting the polynomial function for each spatial
grid cell in the pf-RSM using 20—40 CTM simulations. The 14
terms used to represent the PM,s and O; responses to
emission controls were determined previously in designing the
pf-RSM and are shown in Figure 1.

Neural Network Training. The CNN was selected as the
neural network in this study because of its advantages in
analyzing image data®*® and the similarity of spatial
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distributions of ambient pollution concentrations to image
data. Also, CNNs are relatively good at representing complex
nonlinear behavior compared with other machine learning
methods and are therefore suitable for representing the O3 and
PM,  response functions.

Data Set. We collected pollutant concentrations from CTM
modeling for 480 days (four domains X 4 months X 30 days
per month) for 40 emission control scenarios plus the baseline
and clean condition simulations (42 simulations overall; see
Table S1). We conducted numerical experiments to test
DeepRSM performance on each of the four spatial domains.
To evaluate the temporal transfer capabilities of the DeepRSM
(-TT experiments), we used the first 25 days in each month as
the training data set and the last S days in each month as the
test data set. To evaluate the domain transfer capabilities of the
DeepRSM (-DT experiments), we used all 360 days from the
three domains that were not being tested as the training data

https://dx.doi.org/10.1021/acs.est.0c02923
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set and the last S days in all months (20 days in total) from the
domain being evaluated as the test data set. For -DT
experiments with fine-tuning, we included in the training
data set an additional 5 or 20 days that were randomly selected
from the first 25 days in each month from the domain being
evaluated.

More training data could lead to an improved CNN model,
although the computational cost of the numerical air quality
model limits the ability to create abundant training data. Data
augmentation has been shown to improve the performance of
CNN in low level tasks (i.e., the output value at each location
is only related to the input values spatially close to the
location),**® which is also the case for atmospheric
concentration response to emissions we studied here. There-
fore, we randomly cropped the indicator maps by the size of 96
for data augmentation to improve the CNN performance.

DeepRSM Training Strategy. Since the relative change in
pollutant concentration is the metric often used by policy-
makers, we adopt an objective function that measures the
relative loss between predicted and simulated concentrations

N ™ -y

1 i,j,¢ i,j,¢
NHWC Z Z ()

n=1 i,j,c ij,c

‘E(ﬁry) =
(E2)

where J and y denote the DeepRSM-predicted and CTM-
simulated pollutant concentrations, respectively. The variable
N denotes the number of samples and H,W, and C denote the
height, width, and a number of channels of y, with i € [0,H], j
€ [0,W], and ¢ € [0,C]. All model hyperparameters were
chosen using holdout validation data sets. The objective
function is optimized using Adam®” with f3; = 0.9, 8, = 0.999
and a mini-batch size of 32. The learning rate starts from
0.0002 and linearly decay to zero at the end of training. To
reduce the risk of overfitting, we applied L, weight
regularization on all trainable parameters during training and
fine-tuning. For each simulated day, one group of indicators
(i.e., the concatenated baseline and clean condition indicators)
corresponds to one group of coeflicients in the polynomial
response function. However, 40 concentration labels are
available that correspond to the 40 emission control scenarios
simulated with CMAQ. To achieve computational efliciency
with the deep CNN, we calculate the average of the objective
function over all emission control scenarios in one day and
then backpropagate the gradients of the average loss to update
our model and complete one epoch. The DeepRSM and
DeepRSM+ models are trained for 5000 epochs in -TT and
-DT experiments and are fine-tuned for another 1000 epochs
in fine-tuning experiments.

Evaluation Metric. Validation of the model performance is
critical.*® For consistency with the performance evaluation of
the benchmark model,***"** the performance of the
DeepRSM was evaluated using two statistical indices, namely,
meanNE and 95th maxNE, which are also commonly used in
evaluating the performance of atmospheric numerical model-
ing."” They are calculated as follows

N
1 M. — Ol

meanNE = — — L
N

i=1 t

(E3)

[|M,, - o,,|]
maxNE = max| ———

(E4)

i
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where M; and O; are the DeepRSM-predicted and CMAQ-
simulated values of the ith data in the series and N represents
the number of records (i.e, number of data sets multiplied by
the number of grid cells).

B RESULTS

Principle of the DeepRSM. The basic principle of the
DeepRSM is that the coefficients in the response functions for
PM, and O; from the pf-RSM can be accurately estimated
from indicator species rather than by fitting results of CTM
simulations based on random samples of emission scenarios.
This design eliminates the need for a large number of
computationally expensive CTM simulations as in the previous
pf-RSM approach. To deploy the DeepRSM, only two CTM
simulations are required: one for baseline emission levels and
one for “clean” emission levels, where all anthropogenic PM, g
and Oj; precursor emissions are fully controlled.

The key design elements of the DeepRSM are the selection
of the O, and PM, ; response indicators (i.e., concentrations of
relevant chemical species under baseline and clean conditions)
and the architecture of the CNN. To ensure the efficiency of
the DeepRSM, we selected 18 chemical indicators that are
relatively important to O; and PM, 5 formation from the 130+
chemical species that are simulated in the CMAQ model. The
indicators are either products or reactants in chemical
reactions involving O; or PM, and are represented in all
major CTMs. The pf-RSM model predicts strong correlations
between the coefficients of the 14 terms in the PM, and Oy
response functions and the changes in indicator concentrations
between the baseline and clean emission simulations. These
correlations are consistent with current knowledge in
atmospheric chemistry. For example, the coefficient of the
linear term for NO, emissions in the O; response function
exhibits the strongest positive correlation with H,O,
concentrations (r = 0.8) but negative correlation with
concentrations of nitrogen species (r = —0.3 to —0.6) (Figure
1a). These relationships reflect the behavior that NO,, emission
control tends to reduce O; when H,0, is high and NO,, is low
(NO,-limited regime®’) but increase O; when NO, is high and
H,0, is low (VOC-limited regime).

The strong correlations between indicators and response
function coefficients in Figure 1 imply that valuable
information for predicting the response functions for PM,
and Oj is contained in the indicators. However, extracting this
information is challenging because the coefficient of each term
is positively or negatively correlated with multiple indicators.
For example, the PM,; components (SO, NO;, NH,, and
SOC) are highly correlated with the majority of coefficients in
both the O and PM,  response functions (Figure 1). Such
collinearity among the chemical indicators motivates the use of
neural network technology, which has advantages over
traditional statistical regression in resolving complex relation-
ships.

Deep neural networks have led to a series of breakthroughs
in a wide range of fields due to their powerful ex})ressive ability
to approximate complex nonlinear functions.”">* A deep CNN
with residual connection®® is employed here for four reasons.
First, deep neural networks can efliciently solve highly
nonlinear regression problems and are therefore potentially
suitable for resolving the collinearity among chemical
indicators. Second, CNNs can effectively use spatial relation-
ships among nearby chemical indicators that may contribute to
local pollutant concentrations. Third, CNNs with the convolu-

https://dx.doi.org/10.1021/acs.est.0c02923
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tional kernel applied over space can well represent the
common atmospheric processes and reactions occurring across
the domain. Finally, residual connection is indispensable for
modern deep CNN models, and a deep network is needed to
provide high accuracy in modeling the complex processes that
influence atmospheric chemistry.

The architecture of the DeepRSM model is illustrated in
Figure 2. We use spatial concentration fields of 18 chemical
indicators under baseline and clean conditions to represent the
predictive features of the system. We concatenate the indicator
fields for both scenarios before feeding them into our
DeepRSM model. The first convolutional layer of the
DeepRSM model transforms the 36 input channels of indicator
maps into 128 channels of feature maps. This layer is followed
by eight residual blocks and one convolutional layer through
which the number of channels is maintained at 128 to increase
the expressiveness of the network. The last convolutional layer
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transforms the number of channels from 128 to 14, which
represent the coeflicients in the standard polynomial function
based on prior knowledge from pf-RSM development. O; and
PM,  concentrations are calculated as the inner product of the
coefficients in the last layer and the corresponding response
function terms based on the specific emission control scenario.
We use LeakyReLU®* as the nonlinear activation function
because it preserves negative gradients and performs well in
low-level regression tasks. Our results suggest that the
DeepRSM (trained with the CN27 data set as one example)
can well reproduce the spatial and seasonal variations in the
coefficients of the PM, and O; response functions, with
results similar to those of the pf-RSM (Figure S2).

Although the polynomial function in the pf-RSM was
carefully designed in our previous study, uncertainty still exists
in the functional form of air quality responses to precursor
emission changes. Therefore, in addition to the DeepRSM
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Figure 3. pf-RSM and DeepRSM performance in predicting PM, 5 responses to emissions in different numerical experiments. -TT, training based
on the same spatial domain but different days than testing; -DT, training based on different spatial domains than testing; and -DTFES, -DTF20, and
-PolyDTF20, -DT experiments based on the fine-tuning procedure. Results are based on Jan 30 for control scenario #35 in Table S1 (emission
change ratios of NO,, SO,, NH;, and VOC are 92.0, —84.2, —98.0, and —33.6%, respectively).

based on the 14 terms of the pf-RSM response function, we
developed the DeepRSM+ model that augments the
polynomial function with 50 additional implicit terms to
reduce the approximation error. The additional terms are
automatically learned from the emission control factor vector
using a compensated polynomial term model (CPT model in
Figure 2) and are not associated with an analytical functional
form. The CPT model uses three fully connected layers of
width 128 to learn the nonlinear transformation from the
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emission control factor vector to the values of the additional 50
terms. The total number of terms in the augmented
polynomial function is 64, which equals the number of
coeflicient maps and channels in the last convolutional layer of
the DeepRSM+ model.

DeepRSM is Effective across Time Periods and
Spatial Domains. A key advantage of the DeepRSM is that
the trained deep CNN is generally transferable across time
periods (i.e.,, temporal transfer, TT) and spatial regions (i.e.,
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Figure 4. Isopleths of PM, ; response to NO,/VOC (a) and SO,/NHj; (b) emission change (baseline = 1) predicted by the pf-RSM and DeepRSM
for the CN27 domain (the values are averages of all grid cells and days; the color dots represent the simulated value in CMAQ).

domain transfer, DT). To examine the temporal transfer
capabilities, we trained the DeepRSM model using data from
the first 25 days in each of the 4 months and applied it to
predict concentration responses in the last 5 days of each
month on the same domain (i.e., -TT experiment in Table S2
for PM, ¢ and O;, Figure 3 for PM,;, and Figure S3 for O;).
Evaluation of the DeepRSM predictions against CTM results
demonstrates good performance, with the mean normalized
error (meanNE) less than 5% and 95th maximal NE (95th
maxNE) less than 10%. The performance of the DeepRSM
based on two CTM simulations in the -TT experiment is
significantly better than that of the pf-RSM, which is based on
fitting with 20 CTM scenarios, and demonstrates the
transferability of the DeepRSM to time periods not included
in the training data.

To examine the transferability of the DeepRSM to different
spatial domains, the air quality response predicted in one
domain was evaluated based on the DeepRSM model trained
with data from the other three domains (i.e,, -DT experiment
in Table S2 and Figures 3 and S3). The -DT experiment is a
greater test for the DeepRSM than the -TT experiment
because differences in air quality simulated for different regions
and grid resolutions are much larger than for air quality
simulated for different days for the same region and resolution.
Despite the greater challenge, the DeepRSM performance is
only slightly degraded in the -DT experiment compared to that
in the -TT experiment. The DeepRSM exhibits similar or
slightly better performance than pf-RSM in the -DT experi-
ment in all domains except for CN27.
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Predicting concentrations on the CN27 domain is relatively
challenging using the DeepRSM based on training data from
the three smaller domains that do not fully encompass the
CN27 domain. However, the DeepRSM performance can be
readily improved as necessary using a fine-tuning procedure in
which the model is dynamically updated using very little
additional training data. To demonstrate the performance
improvement, we fine-tuned the DeepRSM models trained in
the -DT experiments using an additional S or 20 days of data
from the test domain and a relatively small number of epochs
(i.e., -DTFS and -DTF20 cases in Figure 3 and Table S2). The
fine-tuning method is especially effective for reducing
prediction bias for the CN27 domain.

DeepRSM predictions of the daily variation in air quality
response was also evaluated for the -DT experiment in which
no data for the test domain was used in training (Figure S4 for
PM,  and Figure SS for Os). The results indicate that the daily
variations in air quality response predicted by the DeepRSM
are similar to those simulated with CMAQ_across all four
months and domains. Moreover, the spatial distributions of air
quality responses are also consistent with CMAQ_simulations,
as shown in Figures S6—S9 for PM, s and Figures S10—S13 for
O;. The results of the -TT and -DT experiments demonstrate
that the DeepRSM can efficiently and reliably capture
variations in PM, 5 and Oj response across space and time.

To further examine the ability of the DeepRSM to predict
the nonlinear response of air quality to emission changes, we
generated PM, 5 and Oj isopleths for DeepRSM predictions in
the -DT experiment for simultaneous changes in emissions of
two precursors (Figures S14 and S15): PM, 5 response to NO,,
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and VOC emissions (Figure S14a), PM, g response to SO, and
NH; emissions (Figure S14b), O; response to NO, and VOC
emissions (Figure S15a), and Oj response to SO, and NH,
emissions (Figure S15b). We included 25 colored dots in the
isopleths that correspond to CMAQ predictions that were not
used in model training for comparison with the DeepRSM
predictions. We also compared isopleths based on pf-RSM
predictions with those based on the DeepRSM. These
comparisons indicate that the DeepRSM generally captures
the nonlinear response of O; and PM, s to precursor emission
changes across seasons. For instance, the DeepRSM predicts
that O; chemistry is strongly VOC-limited in January and
NO,-limited in July and that the PM, 5 response to NO, and
VOC emission changes has a similar, but weaker, dependence
on oxidant abundance to Oj;. The DeepRSM results also
suggest that the effectiveness of NO, and NH; emission
controls for PM, s reduction increases with increasing control
(from 1 to 0 in Figure S14). The concentration responses
predicted by the DeepRSM generally agree well with those
simulated by CMAQ, and the DeepRSM isopleths are
consistent with the pf-RSM isopleths, despite the use of only
two CTM simulations by the DeepRSM.

As mentioned above, the performance of the DeepRSM can
be further improved by optimizing the polynomial structure
using the DeepRSM+ model. The DeepRSM+ model adopts
50 additional terms that are learned from the emission control
factor vector using the CPT model to reduce the
approximation error of the polynomial function. In all
experiments, the DeepRSM+ model with an optimized
polynomial structure based on fine-tuning with an additional
20 simulation days (i.e., -PolyF20 experiment in Table S2 and
Figures 3 and S3) exhibits the best performance, with meanNE
<5% and 95th maxNE <10% across all months and domains.
The value of the compensation terms is also evident in the
isopleth comparison displayed in Figure 4. The compensation
terms adjust the DeepRSM toward the CTM simulation
results, particularly along edges of the isopleths where emission
control factors are close to 0 (fully controlled) or 2 (doubled).
These conditions are relatively hard to resolve using the
DeepRSM model based on the 14-term polynomial function
alone.

Interpretability of the DeepRSM for Prediction of the
Air Quality Response. The success of the DeepRSM implies
that information from only two states (i.e., baseline and fully
controlled scenarios) is needed to fit the curved concentration
surface in a four-dimensional space (i.e., emission changes of
NO,, SO, NH;, and VOCs) using the trained deep CNN.
Concentrations throughout the four-dimensional space cannot
be predicted accurately using only PM, s or O3 concentrations
from the two states; however, rich information for the
prediction of PM, and Oj; is contained in the states in the
form of chemical indicators. Therefore, the DeepRSM
predictions are based not only on PM, 5 and O; concentrations
at two points but also on two pairs of vectors including the full
suite of chemical indicators in addition to PM, and O,
concentrations. The set of indicators contains sufficient
information to represent the key atmospheric chemical and
physical processes independent of spatial location or time
period. The DeepRSM represents the atmospheric processes
by linking the coeflicients of the air quality response functions
and the indicators in an eflicient way, as follows.

If we consider a single grid cell in a CTM as a box model,
the concentration change over time can be written as follows
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dipl _

m =S Zfl(k,y [Il,...,s])

(Es)

where [P] is the concentration of the air pollutant (i.e.,, PM,
or O3), f; is the numerical function of the process i (e.g,
transport, chemistry, deposition) that contributes to the
pollutant concentration, k; is related to geographic (e.g., land
cover) and meteorological variables (e.g., temperature, solar
radiation, wind) but independent of concentrations, and [L] is
the concentration of reactant s in a bi- or trimolecular reaction.
The ambient concentrations of the gaseous precursors for O,
and PM,; (i.e., [I,], where p = NO,, SO,, NH;, and VOCs)
are approximately proportional to their emissions (E,), as
follows

[I,] < E, (E6)
Although the forms of the f; terms differ significantly for
different processes, they can all be approximated with
polynomial functions. Using the precursor emissions as
independent variables, EE1 can be represented as a polynomial
function of precursor emissions, as follows

d[p
% = g](k]; [Il,...,r]’ EP) ( )
E]_ E7

where g; is the jth term in the polynomial function of precursor
emissions.

The average concentration of P over an integration period
can be estimated based on EE3 according to the following
equation

m = Zg}(gl II,...,r]l Ep)
j (E8)

Equation EE4 is of the same form as the polynomial function
used in the pf-RSM. Therefore, the accuracy of the pf-RSM
suggests that the coefficient of each term is roughly constant
and unrelated to the variation of E, but still related to the
constant k; and concentration of reactant [Is]. Thus, we can
conclude that the coeflicient of each term is only determined
by the concentration of reactants and the geographic or
meteorological factors. Since the coeflicient of each term is
constant in the response function and does not change with
emissions, the concentration of reactants can be determined
from a single baseline emission simulation to develop the
response functions. Considering the challenges in representing
the geographic and meteorological factors, we additionally use
the concentration of reactants under clean conditions (fully
controlled scenario) to further represent such an influence.
More importantly, the difference in concentrations from the
two scenarios (baseline and fully controlled) can be used to
indicate the influence of the controllable fraction of the total
emissions since some emissions cannot be readily controlled
(e.g., biogenic sources and regional emissions from outside the
target area).

To promote interpretability of the machine learning results,
we examined the relative contribution of each indicator to the
coefficients in the PM,; response function (Figure S). In
general, the wide range of the contribution of each indicator to
the coeflicients demonstrates the advantage of machine
learning for feature extraction from the raw 18 indicators.
The coefficient for the linear NH; emission term (term 2) is
strongly determined by the indicators HNO;, nitrate (NO,),
ammonium (NH,), and PM, . The coefficient for the linear
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Figure S. Relative contribution of each indicator to the coefficients of
14 terms in PM, 5 response function (from the highest shown as red
to the lowest shown as blue).

SO, emission term (term S) is strongly determined by the
indicators OH, sulfate (SO,), and ammonium (NH,). For
high-order NO,, emission terms (terms 8, 12, 13, 14), the
coeflicients are most influenced by indicators associated with
complex free radical oxidation reactions. These relationships
are consistent with known mechanisms of atmospheric
chemistry and indicate that the DeepRSM based on deep
learning is scientifically reasonable in addition to performing
with high accuracy and efficiency.

Our study is the first to apply deep learning technology in
predicting the air quality response to emission changes by
linking CNN and RSM technologies using a carefully selected
set of chemical indicators and novel model design. The new
DeepRSM developed in this study significantly improves the
real-time prediction of air quality for the full range of policy-
relevant control strategies, compared to previous methods such
as the original RSM.

Since the DeepRSM links the coefficients of the PM, 5 and
O; response functions with chemical indicators independent of
time and space, it can be applied for any study period or
domain. The good performance of CNN for days (-TT
experiments) and spatial domains (-DT experiments) not
represented in the training data supports this use. Compared to
the traditional regression methods (e.g., the pf-RSM bench-
mark case), the DeepRSM has higher efficiency and accuracy
and thus can be applied for real-time air quality response
prediction in integrated assessment systems to inform long-
term air quality management. It can also be applied for daily air
quality forecast and combined with short-term emission
control measures to develop emergency actions to protect
public health.

The scientific implications of our study are that the ambient
concentrations of the chemical indicators are key factors for
determining the nonlinear response of air quality to emission
changes. This finding does not imply that other factors are
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unimportant, since factors such as meteorology and geographic
characteristics are likely somehow already considered in the
CNN through the change in indicator concentrations between
the clean and baseline conditions. This study also reveals an
important fact that, for systems that can be represented
deterministically (e.g, atmospheric air pollution), we can
interpret the full pathway using information from the initial
and final states alone. However, training networks to
adequately represent such systems is a major challenge,
which requires full knowledge of the relevant factors
(indicators) and ample training data.
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